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Waiting times, probabilities and the Q factor of fluorescent photons
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Photons in resonance fluorescence from a single atom are correlated, and this affects the photon detection
statistics. We consider the time dependence of the variance for the number of counts in a time interval [0,T], and
we show that there exist Poisson points for certain values of the atomic parameters. At these points, the variance
equals the average, like for a Poisson process. We also show that the conditional probability density for the
detection of the nth photon after a detection of a photon at time zero can be obtained from the conditional
probability density for the first photon, and we illustrate this by computing several conditional probability
densities for a special case of interest. The unconditional probability density for the detection of the nth photon
can be obtained from the conditional probability densities and the probability for detecting n photons in [0,T]
can subsequently be found from the unconditional probability densities.
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1. Introduction

When light is detected by a photomultiplier tube, the

recorded photoelectron pulses are interpreted as

observations of photons, which are absorbed from

the incoming light by the detector. Photon counts

are considered as events (dots) on the time axis, and

these events are highly random due to the quantum

mechanical nature of the detection process (photo-

excitation of atoms in the detector), and also

possibly due to randomness in the light to be

detected. If the light can be represented by a classical

electric field E(t), at the location of the detector,

then this field will in general have stochastic fluctu-

ations, for instance if it is emitted by a large number

of atoms, like in a gas discharge or a filament

source. Certain types of radiation require a quantum

description, in which case E(t) is an operator field,

and additional randomness possibly enters the dis-

tribution of photon events due to inherent quantum

uncertainties.
When light is observed through photon counting,

properties of the radiation are reflected in the

correlations in arrival times of photons, and in the

statistical distribution of the photon events. The most

comprehensive account of the statistical properties of

random events is by means of the intensity

correlations, defined as [1]

Ikðt1, t2, . . . , tkÞ dt1 dt2 . . . dtk

¼ probability for an event in ½t1, t1þ dt1�, and . . . and

an event in ½tk, tkþ dtk�, irrespective of events at

other times, and with t15 t25 � � �5 tk, ð1Þ

for k¼ 1, 2, . . . . In the theory of random events, these
functions are usually referred to as distribution func-
tions [2]. The relation between the incident field on the
detector and the counting statistics is given by [3,4]

Ikðt1, t2, . . . , tkÞ

¼ �k Eðt1Þ
ð�Þ
� � �EðtkÞ

ð�ÞEðtkÞ
ðþÞ
� � �Eðt1Þ

ðþÞ
� �

, ð2Þ

where E(t) is E(t), projected on a polarization direc-
tion, and (þ) and (�) indicate the positive and negative
frequency parts of E(t), respectively. Parameter � is an
overall constant, which depends on the detector
aperture, the detector volume, etc, and h� � �i indicates
an average over either stochastic fluctuations in the
radiation field or a quantum average, depending on the
type of radiation to be detected.

We shall consider the radiation emitted by a
two-state atom in a laser beam, e.g., resonance
fluorescence. This elementary system has been studied
extensively, both experimentally and theoretically.
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The two-photon correlation function I2ðt1, t2Þ vanishes

for t2 ¼ t1, a phenomenon called antibunching. This is

a result of the fact that after the emission of the first

photon at time t1, the atom is in the ground state, and

it takes a finite time for the atom to reach the excited

state again, after which the second photon can be

emitted. This has been verified experimentally [5–7].

It can be shown [8] that for classical radiation we have

I2ðt1, t1Þ � Iðt1Þ
2, and therefore antibunching is consid-

ered evidence for the quantum nature of resonance

fluorescence. Another feature of fluorescence is that

the variance of the count statistics may be smaller than

the average. Such sub-Poisson statistics is prohibited

for classical radiation [9], and its observation [10–14] is

further evidence that resonance fluorescence radiation

has no classical description.
There are numerous other statistical properties of

random events that have not received much attention

for fluorescence radiation. Most notably, the proba-

bilities PnðT Þ for detecting n photons in a time

interval ½0,T� and the probability densities for the

detection or emission of photons have rarely been

considered. We shall show that these properties of the

radiation can be obtained for resonance fluorescence,

and we present specific results for particular cases of

interest.

2. Random events and the Q factor

Let PnðT Þ be the probability for observing n events in a

counting time interval ½0,T�. The factorial moments of

the random events in ½0,T� are defined as

SkðT Þ ¼
X1
n¼k

n!

ðn� kÞ!
PnðT Þ, k ¼ 0, 1, 2, . . . : ð3Þ

This relation can be inverted as

PnðT Þ ¼
ð�1Þn

n!

X1
k¼n

ð�1Þk

ðk� nÞ!
SkðT Þ, ð4Þ

as can be checked by inspection. The factorial

moments are determined by the intensity correlations

as [1]

SkðT Þ ¼ k!

ðT
0

dtk

ðtk
0

dtk�1 . . .

ðt2
0

dt1Ikðt1, . . . , tkÞ,

k ¼ 1, 2, . . . , ð5Þ

and S0ðT Þ ¼ 1. For the detection of radiation, the

intensity correlations are given by Equation (2), and

therefore Equations (5) and (4) give the factorial

moments and the probabilities.

The average number of events in ½0,T� is

�ðT Þ ¼
X1
n¼0

nPnðT Þ ¼ S1ðT Þ ¼

ðT
0

dt1I1ðt1Þ, ð6Þ

and the variance is

�ðT Þ2 ¼
X1
n¼0

ðn� �ðT ÞÞ2PnðT Þ

¼ S2ðT Þ � S1ðT Þ
2
þ S1ðT Þ: ð7Þ

For independent events, PnðT Þ is a Poisson distribu-

tion, and �ðT Þ2 ¼ �ðT Þ. A convenient measure for the

deviation from Poisson statistics is Mandel’s Q factor

QðT Þ ¼
�ðT Þ2 � �ðT Þ

�ðT Þ
, ð8Þ

which can also be expressed as

QðT Þ ¼
S2ðT Þ � S1ðT Þ

2

S1ðT Þ
: ð9Þ

Clearly, we have QðT Þ � �1. For �1 � QðT Þ5 0 we

have �ðT Þ2 5�ðT Þ, and the statistics is said to be sub-

Poissonian, and for QðT Þ4 0 the statistics is super-

Poissonian.
We shall consider stationary distributions of

random events. Then the intensity correlations

Ikðt1, . . . , tkÞ can only depend on the time arguments

through the time differences. In particular, I1ðt1Þ is

independent of t1, and we shall simply write I. This I is

referred to as the intensity of the random process. The

average for a stationary process is �ðT Þ ¼ IT. For the

two-time correlation function we have I2ðt1, t2Þ ¼

I2ð0, t2 � t1Þ. When we introduce the normalized cor-

relation function

�ð�Þ ¼
I2ð0, �Þ

I2
� 1, ð10Þ

then the Q factor can be represented as

QðT Þ ¼ 2I

ðT
0

d� 1�
�

T

� �
�ð�Þ: ð11Þ

When we expand the right-hand side in a Taylor series

for T small, we find

QðT Þ ¼ IT�ð0Þ þOðT2Þ: ð12Þ

Therefore, for small counting times the sign of QðT Þ is

the same as the sign of �ð0Þ. For resonance fluorescence
we have I2ð0, 0Þ ¼ 0 (ultimate antibunching), so

�ð0Þ ¼ �1 and the statistics is sub-Poissonian. For

long counting times we find

Qð1Þ ¼ 2I

ð1
0

d� �ð�Þ, ð13Þ
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provided that the integral over � �ð�Þ is finite. In terms

of the Laplace transform

~�ðsÞ ¼

ð1
0

d� e�s��ð�Þ, ð14Þ

we then have

Qð1Þ ¼ 2I ~�ð0Þ: ð15Þ

Equation (13) expresses that Qð1Þ5 0 if the events are

anti-bunched (�ð�Þ5 0) on average.

3. Event probability densities

The probability density for the appearance of the nth

event is defined as

wnðtÞdt

¼ probability that the nth event appears in ½t, tþ dt�,

ð16Þ

for n¼ 1, 2, . . . . It is shown in the Appendix that these

probability densities can be expressed in terms of the

probabilities as

wnðtÞ ¼ �
d

dt

Xn�1
m¼0

PmðtÞ: ð17Þ

The inverse of this relation is

P0ðT Þ ¼ 1�

ðT
0

dt w1ðtÞ, ð18Þ

PnðT Þ ¼

ðT
0

dt ½wnðtÞ � wnþ1ðtÞ�, n ¼ 1, 2, . . . , ð19Þ

as is most easily seen from Equations (A3) and (A4),

and using Pnð0Þ ¼ �n0. Therefore, the probabilities and
the probability densities determine each other

uniquely. With Equation (4), the probability densities

can also be expressed in terms of the factorial

moments as

wnðtÞ ¼
ð�1Þn

ðn� 1Þ!

X1
k¼n

ð�1Þk

k

1

ðk� nÞ!

d

d t
SkðtÞ, ð20Þ

with inverse

SkðT Þ ¼ k
X1
n¼k

ðn� 1Þ!

ðn� kÞ!

ðT
0

dt wnðtÞ: ð21Þ

When we integrate Equation (17) over ½0,T� we find

ðT
0

d t wnðtÞ ¼ 1�
Xn�1
m¼0

PmðT Þ: ð22Þ

If wnðtÞ is to be a probability density, then it should

hold that ð1
0

dt wnðtÞ ¼ 1: ð23Þ

From Equation (22) we see that this requires that

Pmð1Þ ¼ 0, for m¼ 0, 1, . . . , n� 1. For an arbitrary

random event process, this is not necessarily the case.

For a stationary process, however, this always holds.

We shall only consider stationary processes. Then, let

us introduce the random variable �n as the arrival time

of the nth event, after t ¼ 0. The expectation value of

�n is then

h�ni ¼

ð1
0

dt twnðtÞ, ð24Þ

which is the average waiting time for the nth event to

appear. The variance in �n is

ðD�nÞ
2
¼

ð1
0

dtðt� h�niÞ
2 wnðtÞ: ð25Þ

The function wnðtÞ is the probability density for the

appearance of the nth event after a random initial time

t ¼ 0. A different type of distribution is the conditional

probability density for the appearance of the nth event:

wnðtj0Þdt ¼ probability that the nth event appears

in ½t, tþ dt�, after an event in ½�dt, 0�: ð26Þ

It is shown in the Appendix that for a stationary

process the conditional probability densities can be

found from the unconditional probability densities as

wn tj0ð Þ ¼ �
1

I

d

dt

Xn
m¼1

wmðtÞ, ð27Þ

where I is the intensity of the process. The inverse

relation is

w1ðtÞ ¼ w1ð0Þ � I

ðt
0

dt0w1 t0j0ð Þ, ð28Þ

wnðtÞ ¼wnð0Þ� I

ðt
0

dt0½wnðt
0j0Þ�wn�1ðt

0j0Þ�, n¼ 2,3, . . . :

ð29Þ

The conditional probability densities satisfy the

normalization ð1
0

dtwn tj0ð Þ ¼ 1, ð30Þ

and the conditional waiting time for the nth event is

�nj0h i ¼

ð1
0

dt twnðtj0Þ, ð31Þ
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with variance

D�nj0ð Þ
2
¼

ð1
0

dt t� �nj0h ið Þ
2wn tj0ð Þ: ð32Þ

4. Intensity correlations of resonance fluorescence

We shall consider a two-state atom, with the excited
state jei and the ground state |gi separated by an
energy �h!o, and electric dipole moment operator l.
The atom is irradiated by a monochromatic CW laser
with angular frequency !L, amplitude Eo and polari-
zation "L. The detuning between the laser frequency
and the atomic resonance is

D ¼ !L � !o, ð33Þ

and the complex Rabi frequency is

� ¼
Eo

�h
ejl � eLj g
� �

: ð34Þ

The inverse lifetime of the excited state is the Einstein A
coefficient of the transition. Fluorescence radiation will
be emitted in spontaneous transitions from the excited
state to the ground state as electric dipole radiation.

The intensity correlations of the emitted fluores-
cence have the form [14,15]

I1ðt1Þ ¼ �Aneðt1Þ, ð35Þ

Ik t1, . . . , tkð Þ ¼ �Að Þkf tk � tk�1ð Þ � � � f t2 � t1ð Þneðt1Þ,

k ¼ 2, 3, . . . : ð36Þ

Here, neðt1Þ is the population of jei at time t1, and f(t) is
the population of jei at time t, under the condition that
the atom is in j gi at t¼ 0. The constant � includes the
constant � from Equation (2) and other overall factors
of the dipole radiation. The retardation due to the travel
time of the photons from the atom to the detector has
been suppressed, since this only gives an overall time
shift. The number of emitted photons per second at time
t by a two-state atom is Ane(t), and therefore we can
interpret � as the probability that an emitted photon is
detected. Equation (36) then has the following inter-
pretation: the first photon is detected at time t1. Then
the state of the atom evolves freely up to time t2, and
then the second photon is detected. After the detection,
the atom is in the ground state. Then it evolves freely
again up to time t3, and the third photon is detected at
time t3, and so on. Clearly, f(0)¼ 0, which is the
celebrated antibunching in resonance fluorescence.

The intensity correlations are determined by the
function f(t). Its Laplace transform is found to be

~f ðsÞ ¼
�2

o

2s

1
2Aþ s

Aþ sð Þ 1
2Aþ s
� �2

þD2
h i

þ 1
2Aþ s
� �

�2
o

, ð37Þ

where �o ¼ j�j. Due to spontaneous decay, the atom

will relax to a steady state on a time scale of 1/A, and

we shall assume that at t¼ 0, the initial time for the
photon counting, the atom is in its steady state. Then

ne (t1) in Equations (35) and (36) becomes ne(1), and

we shall indicate this steady-state value by �ne.
Obviously, this is the same as f(1), so we have

�ne ¼ f ð1Þ ¼ lim
s!0

s ~f ðsÞ, ð38Þ

and we obtain

�ne ¼
�2

o

A2 þ 4D2
þ 2�2

o

: ð39Þ

The behavior of f(t) for t small can be found by
considering s!1 in ~f ðsÞ. We find f ð0Þ ¼ f 0ð0Þ ¼ 0,

and f 00ð0Þ ¼ �2
o=2. Therefore,

f ðtÞ ¼
1

4
�2

ot
2 þOðt3Þ, ð40Þ

for t small.
The function f(t) determines the photon statistics of

resonance fluorescence. It depends on the parameters

�o, D and A. We shall use 1/A as the unit of time, e.g.
we set t̂ ¼ At and T̂ ¼ AT, and A as the unit of

frequency, so we set �̂o ¼ �o=A and D̂ ¼ D=A. In this

fashion, only �̂o and D̂ appear as free parameters in the
problem. Finding f(t) by Laplace inverse of the right-

hand side of Equation (37) requires factoring a 3rd

degree polynomial. Although this can be done, the
result is not very appealing. The most important

special case of interest is resonance ðD ¼ 0Þ, for

which [16]

f ðtÞ ¼ �ne 1� e�
3
4t̂

3

	1
sinh

1

4
	1 t̂

� 	
þ cosh

1

4
	1t̂

� 	
 �� 
,

ð41Þ

with

	1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16�̂2

o

q
: ð42Þ

For �̂o 4 1=4, 	1 is positive imaginary, and the

hyperbolic functions become trigonometric functions.

Figure 1 illustrates the behavior of f(t) for various
values of �̂o. The function is monotonically increasing

for �̂o small, and for �̂o large we see Rabi oscillations.

For the off-resonance case, f(t) can be found easily for
�̂2

o ¼ 2D̂2
þ 1=18, and here we see D̂ as the free

parameter. We find

f ðtÞ ¼ �ne 1�
4

9	22
e�

2
3t̂

�
1

3
�
3

4
	22




þ 3	22 �
1

3

� 	
coshð	2t̂Þ þ

3

2
	2 sinhð	2 t̂Þ

�
, ð43Þ
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with

	2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

36
� 3D̂2

r
: ð44Þ

The behavior of f(t) is very similar as in Figure 1, with
Rabi oscillations setting in for jD̂j large.

5. The Q factor and Poisson points

For resonance fluorescence we have

I2ð0, �Þ ¼ �Af ð�ÞI, ð45Þ

with I ¼ �A �ne. The function �ð�Þ from Equation (10)
becomes

�ð�Þ ¼
f ð�Þ

�ne
� 1, ð46Þ

and therefore Q(T), Equation (11), is determined by
f ð�Þ. With Equation (40) we find

�ð�Þ ¼ �1þ
1

4 �ne
�2

o�
2 þOð�3Þ, ð47Þ

for � small, and so the Q factor becomes

QðT Þ ¼ �ITþ
1

24
�A�2

oT
3 þOðT4Þ, ð48Þ

for small T. Therefore, for small counting times T, the
statistics is always sub-poissonian, and this is an
immediate consequence of the antibunching.

From Equations (46) and (37) we find for the
Laplace transform of �ð�Þ

~�ðsÞ ¼
D2
� 1

2Aþ s
� �

3
2Aþ s
� �

ðAþ sÞ 1
2Aþ s
� �2

þD2
h i

þ 1
2Aþ s
� �

�2
o

: ð49Þ

Since the Laplace transform of � �ð�Þ is � ~�0ðsÞ, we haveð1
0

d� � �ð�Þ ¼ � ~�0ð0Þ, ð50Þ

and this is finite, as can be seen from Equation (49).

Therefore, Qð1Þ ¼ 2I ~�ð0Þ, and we find

Qð1Þ ¼
1

2
� �̂2

o

D̂2
� 3

4

ð12�̂
2
o þ D̂2

þ 1
4Þ
2
, ð51Þ

a well-known result [17]. For jD̂j5
ffiffiffi
3
p
=2 the statistics

is sub-Poissonian, and for jD̂j4
ffiffiffi
3
p
=2 the statistics is

super-Poissonian for long counting times. The mini-

mum value of Qð1Þ is �3�=4, which occurs for D̂ ¼ 0,

�̂o ¼ 1=
ffiffiffi
2
p

. Figure 2 shows Qð1Þ=� as a function of

�̂2
o and D̂2.
For D ¼ 0 the function Q(T) is found to be

QðT Þ ¼ Qð1Þ þ
2� �ne

T̂
ZðT Þ, ð52Þ

with

ZðT Þ¼
1

4ð1þ2�̂2
oÞ

2

�
27þ	21� e�

3
4T̂



ð27þ	21Þcosh

1

4
	1T̂

� 	

þ
9

	1
ð3þ	21Þsinh

1

4
	1T̂

� 	�
, ð53Þ

and with Qð1Þ and �ne from Equations (51) and (39),

respectively (with D set to zero). Figures 3 and 4 show

QðT Þ=� for several values of �̂o. For small values of

�̂o, the Q factor decreases monotonically from zero at

T̂ ¼ 0 to its steady-state value given by Equation (51),

as shown in Figure 3. For curve c we have �̂o ¼ 1=
ffiffiffi
2
p

,

and this corresponds to the lowest possible value of

Qð1Þ=�, which is �3=4. The function f ðtÞ from

Equation (41) approaches its asymptotic value f ð1Þ

exponentially, but the corresponding function QðT Þ

approaches Qð1Þ as O(1/T). For larger values of �̂o,

-0.8

-0.6

-0.4

-0.2

0.0

0.0

0.5
1.0

1.5
2.0

2
oΩ̂

2Δ̂

0.0 

0.5 

α/)(∞Q

Figure 2. A graph of Qð1Þ=�, given by Equation (50), as a
function of �̂2

o and D̂2.

0

0.2

0.4

0.6

0.8

0 4 8t̂

f (t)

a 

b 

c 

Figure 1. Graphs of f ðtÞ for D ¼ 0. For curves a, b and c we
have �̂o ¼ 0:6, 1.2 and 4, respectively.
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as in Figure 4, Qð1Þ=� has a sharp minimum for a

small value of T̂, after which QðT Þ=� increases and

then approaches a small negative Qð1Þ=�. We also

note that oscillations appear, but the curves never cross

the T̂ axis, and therefore the statistics is sub-Poissonian

for all T̂.
Let us now consider the case �̂2

o ¼ 2D̂2
þ 1=18. The

function Q(T) has again the form of Equation (52), but

here we have

ZðT Þ ¼
1

12	22
ð4� 9	22Þð1� e�

2
3T̂Þ

þ
64

	22ð5þ 36D̂2
Þ
2

�
3	22ð1þ 	

2
2Þ �

4

27

� e�
2
3T̂ 3	22ð1þ 	

2
2Þ �

4

27


 �
coshð	2T̂ Þ

�

þ 	2
2

9
þ
11

2
	22

� 	
sinhð	2T̂ Þ

�
: ð54Þ

Figure 5 shows graphs of Qð1Þ=� for various values of

D̂. For small values of D̂, as for curve a, the function

QðT Þ=� decreases monotonically from zero to its

negative long-time value Qð1Þ=�. For larger D̂, the

value of Qð1Þ=� is larger, and the curve has a

minimum. For curve b we have D̂ ¼
ffiffiffi
3
p
=2 and

Qð1Þ=� ¼ 0. For larger D̂, Qð1Þ=� is positive, so the

curve has to cross the T̂ axis, and these points are

indicated by black dots. At these ‘Poisson points’, the

variance of the counting distribution equals the aver-

age. Obviously, such a Poisson point exists for jD̂j4ffiffiffi
3
p
=2, because then Qð1Þ=� is positive, whereas for

small T̂ it is negative. The function QðT Þ is determined

by f ðtÞ, and this function has large Rabi oscillations

when �̂o or jD̂j is large, as can be seen from Figure 1.

However, the oscillations in the function QðT Þ are very

small, as in Figure 4, and they do not result in a

crossing of the T̂ axis, so they do not lead to additional

Poisson points.
It appears, in general, that there is one Poison point

TP for jD̂j4
ffiffiffi
3
p
=2, and none for jD̂j5

ffiffiffi
3
p
=2: This

conclusion holds for the two cases considered above. In

order to strengthen this conjecture, let us consider one

more case of interest. In the weak field limit, �̂o � 1,

we have

�ð�Þ ¼ e�A� � 2 cosðD�Þe�
1
2A�: ð55Þ

The function QðT Þ has the form of Equation (52), and

here we have

ZðT Þ¼ e�T̂�1þ
2

D̂2
þ 1

4

� �2
�

1

4
� D̂2

� 	
1� cosðD̂T̂ Þe�

1
2T̂

h i

þ D̂sinðD̂T̂ Þe�
1
2T̂


: ð56Þ

Figure 6 shows several graphs of QðT Þ, and we see

indeed that there is one Poisson point for jD̂j4
ffiffiffi
3
p
=2.

The value Qð1Þ is zero for jD̂j ¼
ffiffiffi
3
p
=2 and for

jD̂j ! 1, and is maximum for jD̂j ¼
ffiffiffi
7
p
=2. For curve

Figure 5. Graphs of QðT Þ=� as a function of T̂ for the case
�̂2

o ¼ 2D̂2
þ 1=18. For curves a, b, c, d and e the values of D̂

are 0,
ffiffiffi
3
p
=2, 1.05, 1.2 and 2, respectively.

Figure 4. Curves a and b are graphs of QðT Þ=� for D ¼ 0,
with �̂o ¼ 15 and 25, respectively.

Figure 3. Three graphs of QðT Þ=� for D ¼ 0. Curves a, b and
c correspond to �̂o ¼ 0:15, 0.24 and 1=

ffiffiffi
2
p

, respectively.
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c in the figure,Qð1Þ is smaller than for curve b, and that
is why the curves cross. The location of the Poisson
point can be found by numerically solving QðTPÞ ¼ 0,
given jD̂j, and the result is shown in Figure 7. We see
that indeed there are no solutions for jD̂j5

ffiffiffi
3
p
=2.

6. Statistical functions

The intensity correlations for resonance fluorescence
are given by Equations (35) and (36) in terms of the
function f ðtÞ. When substituted into Equation (5), this
determines the factorial moments of the count distri-
bution as a function of the counting time T. Since the
intensity correlations factor, the multiple integrals in
Equation (5) are of the convolution type. We then find
for the Laplace transforms (in T) of the factorial
moments

~S0ðsÞ ¼
1

s
, ð57Þ

~SkðsÞ ¼ I
k!

s2
½�A ~f ðsÞ�k�1, k ¼ 1, 2, . . . : ð58Þ

With Equation (4) we then find the Laplace transforms
of the probabilities:

~P0ðsÞ ¼
1

s
�

I

s2
1

1þ �A ~f ðsÞ
, ð59Þ

~PnðsÞ ¼
I

s2
½�A ~f ðsÞ�n�1

½1þ �A ~f ðsÞ�nþ1
, n ¼ 1, 2, . . . : ð60Þ

The probability densities follow from Equation (17),
which can also be written as

wnðtÞ ¼
d

dt

X1
m¼n

PmðtÞ, ð61Þ

since the probabilities PnðT Þ add to unity. This gives

~wnðsÞ ¼ s
X1
m¼n

~PmðsÞ, ð62Þ

because Pmð0Þ ¼ 0 for m � 1. With Equation (60) we
then obtain

~wnðsÞ ¼
I

s

½�A ~f ðsÞ�n�1

½1þ �A ~f ðsÞ�n
: ð63Þ

The value of wnðtÞ for t! 0 can be found from

wnð0Þ ¼ lim
s!1

s ~wðsÞ, ð64Þ

and since ~f ðsÞ goes to zero for s!1, we find

wnð0Þ ¼ I�n1, ð65Þ

as could be expected. With Equation (27) we have for
the conditional probability densities

~wnðsj0Þ ¼ 1�
1

I

Xn
m¼1

s ~wmðsÞ, ð66Þ

since wmð0Þ ¼ I�m1. With Equation (63) this yields

~wnðsj0Þ ¼
�A ~f ðsÞ

1þ �A ~f ðsÞ

 !n

: ð67Þ

For t ¼ 0 we find

wnð0j0Þ ¼ 0: ð68Þ

For n¼ 1 this is again the antibunching of two
photons.

7. Average waiting time and variance

The function wnðtÞ is the probability density for the
random variable �n, which is the arrival time of the

Figure 6. Three graphs of the Q factor as a function of T̂ in
the weak field limit. For curves a, b, and c we have D̂ ¼ 1:03,
1.2 and 2.5, respectively. The Poisson points are indicated
by black dots. For D̂5

ffiffiffi
3
p
=2 ¼ 0:866, QðT Þ is negative for

all T̂ and there are no Poisson points.

0

5

10

15

20

0 1 2 3|ˆ| Δ3
2
1

PT̂

Figure 7. The dependence of the Poisson point T̂p on jD̂j in
the weak field limit. The dashed line is jD̂j ¼

ffiffiffi
3
p
=2, and there

are no solutions to the left of this line.
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nth photon. With Equation (38) and �A �ne ¼ I we find

from Equation (63) that ~wnð0Þ ¼ 1. In the time domain

this is Equation (23), so this condition is fulfilled

indeed. The waiting time for the nth photon, h�ni, is
computed as in Equation (24). We use Equation (17)

for wnðtÞ, and integrate by parts. The integrated

part is zero (it can be checked from the Laplace

transform for ~PkðsÞ that tPkðtÞ vanishes for t!1),

and we obtain

�nh i ¼
Xn�1
m¼0

ð1
0

dtPmðtÞ ¼
Xn�1
m¼0

~Pmð0Þ: ð69Þ

For m¼ 1, 2, . . . , we find immediately ~Pmð0Þ ¼ 1=I
from Equations (60) and (38). For m ¼ 0 we need

to do this more carefully, since in Equation (59) we

need to combine the two terms. From Equation (46)

we have

�As ~f ðsÞ ¼ I½1þ s ~�ðsÞ�, ð70Þ

and this gives

~P0ðsÞ ¼
1þ I ~�ðsÞ

sþ I½1þ s ~�ðsÞ�
: ð71Þ

Here, ~�ð0Þ is finite, so we find

~Pmð0Þ ¼
1

I
þ �m0 ~�ð0Þ: ð72Þ

Therefore, the average waiting time for the nth

photon is

�nh i ¼
n

I
þ ~�ð0Þ: ð73Þ

For random events, this would be �nh i ¼ n=I, so the

term ~�ð0Þ accounts for the effect of the correlations

between the photons on the waiting time. With

Equation (15) this becomes

�nh i ¼
1

2I
½2nþQð1Þ�, ð74Þ

so the deviation from Poisson statistics can be

expressed in terms of the Q factor for infinite counting

time. For Qð1Þ5 0, the average waiting time is

smaller than for random events, and Qð1Þ � �1 sets

a lower bound on the waiting time.
The variance of �n can be obtained along similar

lines, but the computation is much more involved. The

result is

ðD�nÞ
2
¼

n

I2
þ

2n

I
þ ~�ð0Þ

� 	
~�ð0Þ � 2 ~�0ð0Þ: ð75Þ

For Poisson statistics this would be n=I2. This result

involves the derivative of ~�ðsÞ, which can be found

from Equation (49). An interesting case is D2
¼ 3A2=4,

for which Qð1Þ ¼ 0. Then the long-time counting

statistics is Poisson, and h�ni is the same as for Poisson

statistics. The variance, however, is

ðD�nÞ
2
¼

n

I2
þ

8

2A2 þ�2
o

, ð76Þ

and this is larger than for independent events.
The conditional probability for the detection of the

nth photon is wnðtj0Þ, and the Laplace transform of this

function is given by Equation (67). We see immediately

that ~wnð0j0Þ ¼ 0, so the condition in Equation (30) is

satisfied. In order to find the conditional waiting time,

we proceed as above. For wnðtj0Þ we use the represen-

tation of Equation (27), and integrate by parts. Instead

of ~Pmð0Þ in Equation (69), we now get ~wmð0Þ, and
~wmð0Þ ¼ 1. Therefore

�nj0h i ¼
n

I
, ð77Þ

and there are no correlation effects in this average

waiting time. The variance becomes

ðD�nj0Þ
2
¼

n

I2
þ
2n

I
~�ð0Þ, ð78Þ

and this is also

ðD�nj0Þ
2
¼

n

I2
½1þQð1Þ�: ð79Þ

Apparently, for the conditional waiting times the

variance deviates from its Poisson value, rather than

the average, and this deviation can be expressed in

terms of Qð1Þ. The results in Equations (74) and (75)

were found before [18], although the variance was

expressed in a different form, and Equations (78) and

(79) generalize the result of [19], where the case n ¼ 1

was considered.
The Q factor for long counting times, Qð1Þ, can

be experimentally determined by measuring �ðT Þ2

(and �ðT Þ ¼ IT), according to its definition in

Equation (8). Alternatively, measurement of the

two-photon correlation function I2ð0, �Þ yields Qð1Þ

with Equation (13). From the above we see that Qð1Þ

can also be found from the average waiting time for

the first photon, with Equation (74), or the standard

deviation in the conditional waiting time for the first

photon, Equation (79). From Equations (15) and (72)

we find

Qð1Þ ¼ �2þ 2I

ð1
0

dTP0ðT Þ: ð80Þ

This shows that Qð1Þ can also be obtained from the T

dependence of the probability of finding zero photons

in ½0,T�.
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8. Conditional probability densities

The Laplace transform of the conditional probability
density wnðtj0Þ for the detection of the nth photon is
given by Equation (67). We notice that

~wnþ1ðsj0Þ ¼ ~wnðsj0Þ ~w1ðsj0Þ, ð81Þ

and therefore

wnðtj0Þ ¼

ðt
0

d� wn�1ð�j0Þw1ðt� �j0Þ, n ¼ 2, 3, . . . :

ð82Þ

Consequently, all probability densities wnðtj0Þ can be
found successively by integration as soon as w1ðtj0Þ is
known. The Laplace transform of w1ðtj0Þ is

~w1ðsj0Þ ¼
1

2
�A�2

o

1

2
Aþ s

� 	

� sðAþ sÞ
1

2
Aþ s

� 	2

þD2

" #(

þ
1

2
Aþ s

� 	
1

2
�Aþ s

� 	
�2

o

)�1
: ð83Þ

For the computation of the Laplace inverse, we would
need to factor a 4th degree polynomial. The parameter
� has the significance of the detection probability of an
emitted photon. We shall now consider the case � ¼ 1,
so this refers to the emission statistics of the photons,
rather than the detection statistics. In addition, we
shall consider resonance, so D ¼ 0. Then we easily find

w1ðtj0Þ ¼ A
2�̂2

o

	23
cosh

1

2
	3t̂

� 	
� 1


 �
e�

1
2t̂, ð84Þ

with

	3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�̂2

o

q
: ð85Þ

For �̂o ¼ 1=2, the right-hand side of Equation (84)
should be considered with a limit, and the result is

w1ðtj0Þ ¼
1

4
A�̂2

o t̂
2e�

1
2t̂: ð86Þ

Figure 8 shows w1ðtj0Þ for two values of �̂o. For small
values of �̂o, the curve has a single peak, but for large
�̂o oscillations appear. The average and the standard
deviation are with Equations (77), (79) and (51)

A �1j0h i ¼
1þ 2�̂2

o

�̂2
o

, ð87Þ

AðD�1j0Þ ¼
1

�̂2
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�̂4

o � 2�̂2
o þ 1

q
: ð88Þ

Both functions are shown in Figure 9. The average
decreases monotonically with �̂o, but the standard
deviation has a shallow minimum of

ffiffiffi
3
p

for �̂o ¼ 1.

It is interesting to note that the minimum of Qð1Þ for

D̂ ¼ 0 appears at �̂o ¼ 1=
ffiffiffi
2
p

. At this value, the

standard deviation is 2. For high laser power, both

the average and the standard deviation approach the

limit of 2.
With Equation (82) we can now find wnðtj0Þ for

n¼ 2, 3, . . . . The first few are

w2ðtj0Þ ¼ A
2�̂2

o

	23

 !2�
t̂ 1þ

1

2
cosh

1

2
	3t̂

� 	
 �

�
3

	3
sinh

1

2
	3t̂

� 	
e�

1
2t̂, ð89Þ

w3ðtj0Þ ¼A
2�̂2

o

	23

 !3
t̂

8
cosh

1

2
	3t̂

� 	
� 4


 ��

þ
12

	23
cosh

1

2
	3t̂

� 	
� 1


 �
�

9t̂

4	3
sinh

1

2
	3t̂

� 	
e�

1
2t̂:

ð90Þ

For the average and the standard deviation of �n we have

�nj0h i ¼ n �1j0h i, ð91Þ

ðD�nj0Þ ¼
ffiffiffi
n
p
ðD�1j0Þ, ð92Þ

0

4

8

0 2 4oΩ̂

sd 

ave 

Figure 9. The average (solid curve) and standard deviation
(dashed curve) for �1 as a function of �̂o. The standard
deviation has a minimum at �̂o ¼ 1.

0

0.2

0.4

0.6

0 5 10t̂

Atw /)0|(1

Figure 8. Graphs of w1ðtj0Þ=A for D ¼ 0 and � ¼ 1. For the
dashed and solid curves we have �̂o ¼ 3 and �̂o ¼ 1,
respectively. For smaller values of �̂o the peak moves to
the right and the curve flattens.
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and therefore the behavior is the same as in Figure 9.
In particular, the standard deviation is minimum at
�̂o ¼ 1 for all n. Figure 10 shows wnðtj0Þ for n¼ 1, 2
and 3, and with �̂o ¼ 2. We notice the long tails for
large t̂, and we see that for this value of �̂o there is not
a clear peak near the average (as there is for
smaller �̂o).

9. Probability densities

The probability densities can be found from the
conditional probability densities with Equations (28)
and (29), and wnð0Þ ¼ I�n1 for resonance fluorescence.
For n ¼ 1 we obtain

w1ðtÞ

¼ Ie�
1
2t̂ 1þ

1

	3
sinh

1

2
	3t̂

� 	
þ

1

	3
cosh

1

2
	3t̂

� 	
� 1


 �� � �
,

ð93Þ

and the intensity is

I ¼ A
�̂2

o

1þ 2�̂2
o

: ð94Þ

Although Equation (93) may seem similar in appear-
ance as Equation (84) for the conditional probability,
the properties of w1ðtÞ are quite different. Figure 11
shows graphs of w1ðtÞ for various values of �̂o. The
first difference with the conditional probability w1ðtj0Þ
is that w1ð0Þ ¼ I, rather than zero. As compared to
Figure 8 for the conditional probabilities, we also
notice that the probabilities in Figure 11 do not nearly
oscillate as much. In fact, in Figure 8 the number of
oscillations increases with �̂o, whereas in Figure 11
they seem to smoothen out for large �̂o. We see from
Equations (93) and (94) that for �̂o large the proba-
bility density approaches the limit

w1ðtÞ ¼
1

2
Ae�

1
2t̂, �̂o!1

� �
, ð95Þ

whereas in Figure 8 the oscillations persist for large �̂o.
The average waiting time for the first photon is

with Equation (73)

A �1h i ¼
4�̂4

o þ �̂2
o þ 1

�̂2
oð2�̂2

o þ 1Þ
: ð96Þ

The behavior is very similar as for Ah�1j0i in Figure 9.
For �̂o small, the waiting time Ah�1i is very large, and
for �̂o!1 we have Ah�1j0i ! 2, which is twice the
lifetime of the excited state. This comes from the fact
that the population of the excited state is �ne ¼ 1=2 for
�̂o !1. The right-hand side of Equation (96) has a
very shallow minimum of 1.90 at �̂2

o ¼ 1þ
ffiffiffiffiffiffiffiffi
3=2
p

.
For n ¼ 2 we find with Equation (29) and the

results from the previous section

w2ðtÞ ¼ I
2�̂2

o

	43

 !
e�

1
2t̂



2þ 4�̂2

o t̂þ 2	3 �
3

	3
þ
1

2
	3t̂

� 	

� sinh
1

2
	3t̂

� 	
þ

1

2
t̂� 2

� 	
cosh

1

2
	3t̂

� 	�
: ð97Þ

In the strong field limit, this becomes

w2ðtÞ ¼
1

4
At̂e�

1
2t̂, �̂o !1

� �
: ð98Þ

Figure 12 shows wnðtÞ for n¼ 1 and 2, and for �̂o ¼ 2.

10. Probabilities

Once the probability densities wnðtÞ are known, the
probabilities PnðT Þ for the detection of n photons in
½0,T� can be obtained from Equations (18) and (19).
We thus obtain

P0ðT Þ ¼
1

2	23

1

1þ 2�̂2
o

e�
1
2T̂ ð	23 þ 1Þ cosh

1

2
	3T̂

� 	


þ 2	3 sinh
1

2
	3T̂

� 	
� 16�̂4

o

�
, ð99Þ

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10

Atw /)(1

t̂

Figure 11. Graphs of w1ðtÞ for �̂o ¼ 0:55 (dotted curve),
�̂o ¼ 1:5 (dashed curve) and �̂o ¼ 10 (solid curve). The solid
curve is very close to its high-intensity limit, given by
Equation (95).

0

0.2

0.4

0 2 4 6 8 10t̂

Atwn /)0|(
n = 2 

n = 1 

n = 3 

Figure 10. Graphs of wnðtj0Þ for n¼ 1, 2 and 3, and for
�̂o ¼ 2. The corresponding averages are 9n/4.
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P1ðT Þ ¼
�̂2

o

	43

1

1þ 2�̂2
o

e�
1
2T̂ 4�̂2

o 4 1� cosh
1

2
	3T̂

� 	
 ���

�
3

	3
sinh

1

2
	3T̂

� 	
þ
1

2
T̂ 32�̂4

o þ ð	
2
3 þ 1Þ

n

� cosh
1

2
	3T̂

� 	
þ2	3 sinh

1

2
	3T̂

� 	�
: ð100Þ

Figures 13 and 14 show graphs of P0ðT Þ and P1ðT Þ,
respectively, for various values of �̂o. In the high
intensity limit �̂o!1 we find

P0ðT Þ ¼ e�
1
2T̂, ð101Þ

P1ðT Þ ¼
1

2
T̂e�

1
2T̂: ð102Þ

The probabilities for larger values of n can be obtained
similarly, but obviously with increasing effort.

11. Conclusions

Resonant fluorescent photons are correlated, and this
is reflected in the counting statistics. The Q factor is a
measure for the deviation of the counting statistics

from Poisson statistics. For small counting times T,
QðT Þ is negative as a result of the antibunching of the

emitted photons. For longer counting times, QðT Þ can
become positive, and consequently there exists a point
TP, a Poisson point, where the variance of the count
distribution equals the average. We have shown by
example that there is one such point when Qð1Þ4 0,
and none otherwise.

We have considered the probability density wnðtÞ
for the detection on the nth photon, and the condi-
tional probability wnðtj0Þ for the detection of the nth
photon, after a detection of a photon at time zero. In
the Appendix, general relations for these functions are
derived. It is shown that for resonance fluorescence
these functions can be computed recursively as soon as
w1ðtj0Þ is known. We have computed explicitly the
function wnðtj0Þ for n¼ 1, 2 and 3 for the case of
resonance and where all emitted photons are detected
(� ¼ 1), and the function wnðtÞ for n¼ 1 and 2 for the
same case. It is shown that the probabilities PnðT Þ for
the emission of n photons in the time interval ½0,T� can
be found from the probability densities, and we have
illustrated this by computing P0ðT Þ and P1ðT Þ.
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Figure 14. Graphs of P1ðT Þ, given by Equation (100), for
�̂o ¼ 0:4 (dotted line), 1 (dashed line) and 5 (solid line). The
solid curve is close to the high-intensity limit of
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�̂o ¼ 0:2 (dotted line), 0.4 (dashed line) and 5 (solid line).
The solid curve is indistinguishable from the high-intensity
limit of Equation (101).
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Figure 12. Graphs of w1ðtÞ (solid curve) and w2ðtÞ (dashed
curve) for �̂o ¼ 2.
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Appendix

In this Appendix we shall derive the various relations for the

probability densities and the conditional probability densi-

ties. Let PnðtÞ be the probability for n events in ½0, t�. Here we

write t, rather than T, since for the probability densities the

counting time is a running variable. The derivation of the

various relations is facilitated by the use of diagrams.

Figure 15 shows the definitions of PnðtÞ and wnðtÞ. Then we

consider Pnðtþ dtÞ, as shown in Figure 16. The probability

for zero events in ½0, tþ dt� is the same as the probability for

zero events in ½0, t� and also no events in ½t, tþ dt�, as

illustrated in the top diagram. For n � 1, however, there are

two ways in which we can have n events in ½0, tþ dt�, as

shown in the lower diagram. Since both outcomes are

exclusive, the probabilities add. Then, as shown in Figure 17,

we can view PnðtÞ, the left-hand side, as the sum of two

contributions, since there can only be zero or one event in

½t, tþ dt�. Then we use the relation from Figure 17 to

eliminate the first terms on the right-hand sides of both

diagrams in Figure 16, which yields the relations depicted in

Figure 18. In the diagrams in Figure 18, each term can be

expressed with a PnðtÞ or a wnðtÞ, and we obtain

P0ðtþ dtÞ ¼ P0ðtÞ � w1ðtÞdt, ðA1Þ

Pnðtþ dtÞ ¼ PnðtÞ � wnþ1ðtÞdtþ wnðtÞdt, n ¼ 1, 2, . . . :

ðA2Þ

This is

d

dt
P0ðtÞ ¼ �w1ðtÞ, ðA3Þ

d

dt
PnðtÞ ¼ �wnþ1ðtÞ þ wnðtÞ, n ¼ 1, 2, . . . , ðA4Þ

with solution

wnðtÞ ¼ �
d

dt

Xn�1
m¼0

PmðtÞ: ðA5Þ

0 t t+dt 
P 

0 t t+dt 
P 

0 

0 0 = 

n − 1

0 t t+dt 
P 

0 t t+dt 
P 

0 t t+dt 
P 

n 

n 0 

1 

= 

+ 1≥n

Figure 16. Equalities for Pnðtþ dtÞ. For n¼ 0, there is only
one term (top diagram), but for n4 0 there are two
possibilities (lower diagram).

0 t 

n P 

0 t t+dt 
P 

n 0 

0 t t+dt 
P 

n 1 

= 

+ 

Figure 17. The figure shows that PnðtÞ can be written as the
sum of two terms.

=)(tPn

=ttwn d)(
0 t t+dt 

n − 1 1 

0 t 

n P 

P 

Figure 15. Schematic illustration of the definitions of PnðtÞ
and wnðtÞ.
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We now consider the conditional probability densities.

To this end, we first rename the initial time as ta, rather than

t ¼ 0, and we set tb ¼ t. Then the probability densities are

wnðta, tbÞ, in obvious notation. The conditional probability

densities are defined as

wnðta, tbjtaÞ dtb ¼ probability that the nth eventis in

½tb, tb þ dtb� after an event in ½ta � dta, ta�,

ðA6Þ

for n¼ 1, 2, . . . . If the functions PnðtÞ are known, then the

average �ðtÞ is given by Equation (6). Then

IðtÞ ¼
d

dt
�ðtÞ, ðA7Þ

which defines the intensity of the random process (we set

I1ðtÞ ¼ IðtÞ). With Equation (1) we then have that IðtÞdt

equals the probability for an event in ½t, tþ d t�,

irrespective of events at other times. Figure 19 shows

schematically wnðta, tbÞdtb and wnðta, tbjtaÞ IðtaÞdtadtb. For

n ¼ 1 we have

w1ðta, tbÞdtb ¼w1ðta, tbjtaÞ IðtaÞdtadtbþw1ðta�dta, tbÞdtb,

ðA8Þ

as follows from the diagram in Figure 20. This is

w1ðta, tbjtaÞ ¼
1

IðtaÞ

@

@ta
w1ðta, tbÞ: ðA9Þ

Then we consider wnþ1ðta � dta, tbÞdtb the diagram for which

is on the left-hand side of the equation in Figure 21. The

second term on the right-hand side is eliminated with the

identity in Figure 22, and this gives the relation shown in

Figure 23. This yields the relation

wnþ1ðta � dta, tbÞdtb ¼ wnðta, tbjtaÞIðtaÞdtadtb þ wnþ1ðta, tbÞdtb

� wnþ1ðta, tbjtaÞIðtaÞdtadtb, ðA10Þ

0 t t+dt 
P 

0 t t+dt 
P 

0 

0 1 

= 

0 t t+dt 
P 

n 

n − 1

0 t t+dt 
P 

0 t t+dt 
P 

n 1 

1 

− 

+ 1≥n

0 t 

0 
P 

− 

0 t 

P n = 

Figure 18. Combinations of previous diagrams that lead to
Equations (A1) and (A2) for the probability densities.

0 1 
P 

at bt btt db +

P 
at

0 1 

bt bb d tt +
= 

aa d tt −

1 

P 
at

0 1 

bt bb d tt +
+ 

aa d tt −

0 

P 
at

0 

1 

bt bb d tt +aa d tt −

Figure 20. The figure shows that w1ðta, tbÞdtb can be written
as the sum of two terms. This leads to Equation (A9).

P 
at

n −1 1 

bt bb d tt +
= 

aa d tt −

1 

P 
at

n 1 

bt bb d tt +
+ 

aa d tt −

0 

P 
at

1 

bt bb d tt +aa d tt −

n 

1≥n

Figure 21. The diagram shows a relation for
wnþ1ðta � dta, tbÞdtb.

=bba d),( tttwn
n − 1 1 

P 

at bt btt db +

baaaba dd)()|,( tttItttwn

P 
at

n − 1 1 

bt bb d tt +
= 

aa d tt −

1 

Figure 19. The definitions of wnðta, tbÞ and wnðta, tbjtaÞ.

P 
at

n 1 

bt bb d tt +
= 

aa d tt −

0 

P 
at

n 1 

bt bb d tt +
+ 

aa d tt −

1 

P 
at

1 

bt bb d tt +

n 

Figure 22. The diagram shows a relation for wnþ1ðta, tbÞdtb.
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and this is

@

@ta
wnþ1ðta,tbÞ ¼ IðtaÞ½wnþ1ðta,tbjtaÞ�wnðta, tbjtaÞ�, n¼ 1,2, . . . :

ðA11Þ

Solving by iteration gives

wnðta, tbjtaÞ ¼
1

IðtaÞ

@

@ta

Xn
m¼1

wmðta, tbÞ, ðA12Þ

and for n ¼ 1 this is Equation (A9).
The conditional probabilities Pnðta, tbjtaÞ are defined as

Pnðta, tbjtaÞ ¼ probability for n events in ½ta, tb�

after an event in ½ta � dta, ta�, ðA13Þ

and the diagram is shown in Figure 24. Along similar lines as

above, we obtain

@

@ta
P0ðta, tbÞ ¼ IðtaÞP0ðta, tbjtaÞ, ðA14Þ

@

@ta
Pnðta, tbÞ ¼ IðtaÞ½Pnðta, tbjtaÞ�Pn�1ðta, tbjtaÞ�, n¼ 1,2, . . . ,

ðA15Þ

by considering several diagrams. The solution is

Pnðta, tbjtaÞ ¼
1

IðtaÞ

@

@ta

Xn
m¼0

Pmðta, tbÞ: ðA16Þ

For a stationary process we have wnðta, tbÞ ¼ wnð0, tb � taÞ

and wnðta, tbjtaÞ ¼ wnð0, tb � taj0Þ. We set t ¼ tb � ta, and

write wnðtÞ and wnðtj0Þ, respectively. With @=@ta !�d=dt,

Equation (A12) becomes

wnðtj0Þ ¼ �
1

I

d

dt

Xn
m¼1

wmðtÞ: ðA17Þ

For a stationary process, Equation (A16) becomes

Pnðtj0Þ ¼ �
1

I

d

dt

Xn
m¼0

PmðtÞ: ðA18Þ

Comparison with Equation (A5) shows

wnþ1ðtÞ ¼ IPnðtj0Þ, ðA19Þ

so for a stationary process the probabilities IdtPnðtj0Þ and

wnþ1ðtÞdt are equal. The diagrams for both probabilities are

shown in Figure 25. Apparently, a conditional event before

or after the n events in ½0, t� has the same effect for a

stationary process.

P 
at

n −1 1 

bt bb d tt +
= 

aa d tt −

1 

P 
at

1 

bt bb d tt +aa d tt −

n 

P 
at

n 1 

bt bb d tt +
− 

aa d tt −

1 

P 
at

1 

bt bb d tt +

n 
+ 

1≥n

Figure 23. This diagram is a combination of previous ones,
and leads to Equation (A10).

)0|(d tPtI n = P 
0

n 

ttd−
1 

P 
0

n 

t
1 

= ttwn d)(1+
tt d+

Figure 25. Two diagrams for which the probabilities are
equal for a stationary process.

aaaba d)()|,( ttItttPn

P 
at

n 

bt
= 

aa d tt −

1 

Figure 24. The definition of the conditional probability
Pnðta, tbjtaÞ.
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